A Blog by Jonathan Low

 

Nov 29, 2021

How the Omicron Covid Variant Was Identified So Quickly

The world is exceptionally fortunate that South Africa turns out to have a sophisticated Network for Genomics Surveillance which is connected to that of other countries and which began working soon after the original virus hit almost two years ago. 

Routine sequencing by this Network's laboratories identified what is now called the Omicron variant. JL

Wolfgang Preiser and colleagues report in The Conversation:

Since early in the pandemic, the Network for Genomics Surveillance in South Africa has been monitoring SARS-CoV-2. South Africa and the UK were the first big countries to implement nationwide genomic surveillance efforts for SARS-CoV-2. South Africa is well set up for with a central repository of public sector laboratory results at the National Health Laboratory Service, good linkages to private laboratories, the Provincial Health Data Centre of the Western Cape Province, and state-of-the-art modelling expertise (with) labs that can study the new virus and discover how far antibodies are able to neutralise it. Routine sequencing by Network member laboratories detected  the new virus lineage.

Since early in the COVID pandemic, the Network for Genomics Surveillance in South Africa has been monitoring changes in SARS-CoV-2. This was a valuable tool to understand better how the virus spread. In late 2020, the network detected a new virus lineage, 501Y.V2, which later became known as the beta variant. Now a new SARS-CoV-2 variant has been identified, known as B.1.1.529. To help us understand more, The Conversation Africa’s Ozayr Patel asked scientists to share what they know.

What’s the science behind the search?

Hunting for variants requires a concerted effort. South Africa and the UK were the first big countries to implement nationwide genomic surveillance efforts for SARS-CoV-2 as early as April 2020.

Variant hunting, as exciting as that sounds, is performed through whole-genome sequencing of samples that have tested positive for the virus. This process involves checking every sequence obtained for differences compared to what we know is circulating in South Africa and the world. When we see multiple differences, this immediately raises a red flag and we investigate further to confirm what we’ve noticed.

Fortunately South Africa is well set up for this. This is thanks to a central repository of public sector laboratory results at the National Health Laboratory Service, (NGS-SA), good linkages to private laboratories, the Provincial Health Data Centre of the Western Cape Province, and state-of-the-art modelling expertise.

Also read: WHO terms new COVID-19 variant as 'Omicron': ‘Variant of concern’ prompts global flight bans, forces WTO to defer meet

In addition, South Africa has several laboratories that can grow and study the actual virus and discover how far antibodies, formed in response to vaccination or previous infection, are able to neutralise the new virus. This data will allow us to characterise the new virus.

The beta variant spread much more efficiently between people compared to the “wild type” or “ancestral” SARS-CoV-2 and caused South Africa’s second pandemic wave. It was therefore classified as a variant of concern. During 2021, yet another variant of concern called delta spread over much of the world, including South Africa, where it caused a third pandemic wave.

Very recently, routine sequencing by Network for Genomics Surveillance member laboratories detected a new virus lineage, called B.1.1.529, in South Africa. Seventy-seven samples collected in mid-November 2021 in Gauteng province had this virus. It has also been reported in small numbers from neighbouring Botswana and Hong Kong. The Hong Kong case is reportedly a traveller from South Africa.

Whether B.1.1.529 will be classified as a variant of interest or of concern, like beta and delta, has not been decided by the World Health Organization yet. We expect that it will be given a Greek name soon.

Why is South Africa presenting variants of concern?

We do not know for sure. It certainly seems to be more than just the result of concerted efforts to monitor the circulating virus. One theory is that people with highly compromised immune systems, and who experience prolonged active infection because they cannot clear the virus, may be the source of new viral variants.

The assumption is that some degree of “immune pressure” (which means an immune response which is not strong enough to eliminate the virus yet exerts some degree of selective pressure which “forces” the virus to evolve) creates the conditions for new variants to emerge.

Despite an advanced antiretroviral treatment programme for people living with HIV, numerous individuals in South Africa have advanced HIV disease and are not on effective treatment. Several clinical cases have been investigated that support this hypothesis, but much remains to be learnt.

Why is this variant worrying?

The short answer is, we don’t know. The long answer is, B.1.1.529 carries certain mutations that are concerning. They have not been observed in this combination before, and the spike protein alone has over 30 mutations. This is important because the spike protein is what makes up most of the vaccines.

We can also say that B.1.1.529 has a genetic profile very different from other circulating variants of interest and concern. It does not seem to be a “daughter of delta” or “grandson of beta” but rather represents a new lineage of SARS-CoV-2.

Some of its genetic changes are known from other variants and we know they can affect transmissibility or allow immune evasion, but many are new and have not been studied as yet. While we can make some predictions, we are still studying how far the mutations will influence its behaviour.

We want to know about transmissibility, disease severity, and the ability of the virus to “escape” the immune response in vaccinated or recovered people. We are studying this in two ways.

Firstly, careful epidemiological studies seek to find out whether the new lineage shows changes in transmissibility, ability to infect vaccinated or previously infected individuals, and so on.

At the same time, laboratory studies examine the properties of the virus. Its viral growth characteristics are compared with those of other virus variants and it is determined how well the virus can be neutralised by antibodies found in the blood of vaccinated or recovered individuals.

In the end, the full significance of the genetic changes observed in B.1.1.529 will become apparent when the results from all these different types of studies are considered. It is a complex, demanding and expensive undertaking, which will carry on for months, but indispensable to understand the virus better and devise the best strategies to combat it.

0 comments:

Post a Comment