In the past, retailers have used demographic data to try to deduce walk-away price. In 2000, some people thought Amazon was doing this when customers noticed they were being charged different prices for the same DVDs. Amazon denied it. This was the result of a random price test, CEO Jeff Bezos explained in a news release. “We’ve never tested and we never will test prices based on customer demographics.”
But demographics are actually a crude way of personalizing prices, the Brandeis economist Benjamin Shiller argued in a recent paper, “First-Degree Price Discrimination Using Big Data.” If Netflix were to use only demographic factors, such as people’s race, household income, and zip code, to personalize subscription prices, his model predicted, it could boost its profits by 0.3 percent. But if Netflix also used people’s web-browsing history—the percentage of web use on Tuesdays, the number of visits to RottenTomatoes.com, and some 5,000 other variables—it could boost its profits by 14.6 percent.
Netflix was not doing any of this; it hadn’t even provided Shiller with the data he used (which he obtained from a third party). But Shiller demonstrated that personalized pricing was feasible.
Are other companies doing this? Four researchers in Catalonia tried to answer the question with dummy computers that mimicked the web-browsing patterns of either “affluent” or “budget conscious” customers for a week. When the personae went “shopping,” they weren’t shown different prices for the same goods. They were shown different goods. The average price of the headphones suggested for the affluent personae was four times the price of those suggested for the budget-conscious personae. Another experiment demonstrated a more direct form of price discrimination: Computers with addresses in greater Boston were shown lower prices than those in more-remote parts of Massachusetts on identical goods. In their paper, “Detecting Price and Search Discrimination on the Internet,” the researchers suggested that consumers could benefit from a price-discrimination watchdog system that would continuously monitor for customized prices (although it’s unclear who would build or operate this). Another paper—this one co-authored by Google’s Hal Varian—argues that if personalized pricing becomes too aggressive, shoppers will become more “strategic,” selectively withholding or disclosing information in order to obtain the best price.
Which, to Bonnie Patten of TruthinAdvertising.org, seems like a whole lot of work. It’s already “so complicated,” she told me. “Everything is 50 percent off, but they have all these exclusions where it doesn’t count, and then everyone is trying to calculate 20 percent of 50 percent in their heads.” She already has a full-time job, was her point. And three kids.
“As a general matter,” she went on, “I find it so difficult to determine the actual price of the product that when I’m shopping for my kids, my new technique is to make all my decisions at the cashier. I pick up lots of clothes. I completely ignore all pricing until I get to the register. And then if something is too much, I say, ‘I don’t want it.’ ”
This struck me as sensible in the extreme. And how did she shop for herself?
“I do not shop,” Patten said.
In what sense?, I asked, confused.
“I just gave up,” she said. “I just stopped shopping.”
I thought about this after we hung up. Maybe it was a function of her job, which let her see too much. Maybe she was a certain type—“survival shopper” was the label she used—who simply didn’t experience the thrill of finding a pair of $30 moccasins for $8. Such thoughts helped stay the alternative explanation, the one Gabriel Tarde called “the madness of doubt”: that there’s a finite amount of uncertainty we can absorb, a limit to how much we can check the ticker to see whether the Swiffer’s price is up or down this morning; that somewhere in us is a shut-off point, and that Patten had hit it.